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SENSOR CHIP AND APPARATUS FOR
TACTILE AND/OR FLOW SENSING

PRIORITY CLAIM

The present application is a continuation of U.S. patent
application Ser. No. 10/861,096, filed Jun. 4, 2004 now U.S.
Pat. No. 7,357,035, which claims the benefit of U.S. Provi-
sional Application Ser. No. 60/476,672, filed Jun. 6, 2003,
under 35 U.S.C. §119.

STATEMENT OF GOVERNMENT INTEREST

The invention was made with Government assistance
under NSF Grant Nos. IIS-00-80639 and IIS-99-84954,
AFOSR Grant F49620-01-1-0496, and NASA Grant No.
NAG5-8781. The Government has certain rights in the inven-
tion.

FIELD OF THE INVENTION

The invention concerns sensors. The invention relates gen-
erally to the field of microscale sensors.

BACKGROUND OF THE INVENTION

Humans and other animals are able to perceive and process
environmental conditions using various sensory attributes.
For example, animal skin and hair act to provide tactile and
flow sensing for perception in land and/or water environ-
ments. Man-made devices rely on sensors constructed on
many different physical principles, for example heat and
resistance, to obtain similar information. Animal sensory sys-
tems have attributes that are more elegant and efficient than
known sensors.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a sensor
chip comprising a flexible, polymer-based substrate and at
least one microfabricated sensor disposed on the substrate
and including a conductive element. The at least one sensor
comprises at least one of a tactile sensor and a flow sensor.
Other embodiments of the present invention are directed to
particular sensors and/or multi-modal sensor nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary tactile sensor node incorpo-
rated into a sensor chip, according to a preferred embodiment
of the present invention;

FIG. 2 shows a flexed sensor chip, according to a preferred
embodiment of the present invention;

FIGS. 3A and 3B show a cross section of a hardness sensor,
and the hardness sensor in contact with an object, respec-
tively, according to a preferred embodiment of the present
invention;

FIG. 4 shows a differential response between the mem-
brane hardness sensor and a reference sensor versus object
hardness, with a linear fit line;

FIG. 5 shows a preferred embodiment of a thermal con-
ductivity sensor, according to an embodiment of the present
invention;

FIG. 6 shows a relationship between thermal conductivity
and a time constant, in which step power input to a gold heater
of a thermal conductivity sensor generates a signal at a nickel

2
temperature sensor, with a time constant that varies with
contact object thermal conductivity;

FIG. 7 shows a response of a skin mapping sensor to skin
curvature, according to an embodiment of the present inven-

5 tion;
FIGS. 8A-8E show an exemplary process for manufactur-

ing a sensor chip having sensors, according to a preferred
embodiment of the present invention;

FIG. 9 shows a membrane hardness sensor with a nichrome
io string gauge, and a reference bulk sensor, respectively;

FIG. 10 shows an exemplary flow sensory node, according
to another embodiment of the present invention;

FIG. 11 shows a silicon based artificial haircell, according
to an embodiment of the present invention;

15	 FIG. 12 shows apreferred artificial haircell (AHC), accord-
ing to a preferred embodiment of the present invention;

FIGS. 13A and 13B show steps in a preferred process for
manufacturing the AHC of FIG. 12, according to a preferred
embodiment of the present invention;

20 FIG. 14 illustrates a post release Ni plating set up, in which
an external magnetic field is used to raise theAHC of FIG. 12,
according to a preferred embodiment of the present invention;

FIGS. 15A and 15B show a plastically deformed Au hinge
without and with electroplating, respectively;

25	 FIG. 16 shows an array of AHCs, having different heights
and widths;

FIG. 17 shows resistance change versus deflection for an
850 µm long and 200 µm wide cilium;

FIG. 18 shows airflow response of AHCs inside a wind
30 tunnel, having various cilium widths and lengths;

FIG. 19 shows a multidimensional array of AHCs;
FIG. 20 shows a three-dimensional array of hot wire

anemometers, according to an embodiment of the present
invention;

35 FIG. 21 shows a polymermembrane diaphragm supporting
metal leads for a pressure sensor and a shear stress sensor,
according to a preferred embodiment of the present invention;

FIG. 22 shows an exemplary cluster of sensor nodes dis-
posed about a data processor;

40 FIGS. 23A-23C show methods for placing a data processor
on a polymer substrate;

FIG. 24 shows a flexible silicon chip; and
FIG. 25 shows steps in an exemplary process for forming

an elastomer skin with embedded silicon islands.
45

DETAILED DESCRIPTION

For machines such as robotics to replace or serve as exten-
sions of humans in dangerous, delicate, or remote applica-

50 tions, such machines should have sensory input at least com-
parable to human senses. One of the most important senses
for performing varied complex and precise tasks autono-
mously or remotely is the sense of touch.

Human beings, for example, employ a flexible, robust sen-
55 sory skin with a distributed architecture to achieve accurate

object identification and dexterous manipulation. Tactile
feedback from human skin provides a multitude of informa-
tion, including force, temperature, hardness, texture, and
thermal conductivity. However, conventionally, machines

6o have not had the sensing capability to provide an equivalent
sense of "touch".

Providing artificial tactile and/or flow sensors that provide
rich sensor data incurs significant challenges. For example, an
optimal artificial sensor would provide multiple sensing

65 modalities, mechanical flexibility and robustness, efficient
signal processing, and high density of integration with signal
readout and electronics. Further, it would be preferred that
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such an artificial sensor would be capable of being manufac-
tured with high efficiency and relatively low cost.

Artificial sensors have been created to provide force imag-
ing and measurement. Such sensors have included silicon-
based sensors, using piezoresistive or capacitive sensing, and
polymer-based approaches that use piezoelectric polymer
films for sensing. Others have combined some of the
strengths of silicon with polymer-based devices, such as by
embedding silicon sensing elements in polymer skins, or by
covering silicon-based devices in a protective polymer layer.
Other devices have been used to measure contact force and
object thermal properties.

A fundamental difficulty faced in creating artificial sensors
such as "sensing skins" is that the sensors in operation would
directly contact a variety of objects and contaminants under
any number of loading conditions. As a result, devices that
incorporate brittle sensing elements such as silicon-based
diaphragms or piezoresistors, even embedded in protective
polymers, typically cannot be used as an interface "skin"
between a robotic manipulator and the manipulated object.
Devices made with pressure-sensitive rubbers that can with-
stand contact have been provided, but they require serial
manual assembly and provide limited independent sensing
modes.

According to preferred embodiments of the present inven-
tion, an artificial sensor chip (or a large-area patch) is pro-
vided on a polymer-based substrate, forming a skin. Prefer-
ably, the sensor chip is flexible, providing a sensory skin that
can be, for example, mounted on curved or other non-flat
surfaces easily and can withstand mechanical flexure and
movement.

The sensor chip incorporates one or more metal film sen-
sors. This provides many functional advantages and uses. The
sensors preferably are distributed in an array, such as a two-
dimensional array, having high spatial density and integrated
signal processing capabilities. The sensor chip and sensor
components thereon preferably are sufficiently robust to sur-
vive mechanical contact with an external harsh environment.

Unlike sensors in an integrated circuit chip that are pack-
aged in enclosed environments, individual sensors according
to a preferred sensor chip are exposed. Also, itis preferred
that a frontal surface of the sensor chip be relatively smooth
and free from mechanical protrusions, etch holes, exposed
wiring, or other flaws and design compromises that would
allow environmental contamination or accelerated wear and
failure of the device.

In a preferred sensor chip, the distributed sensors are con-
nected using signal processing circuitry that is distributed
spatially and can accommodate multiple streams of analog
sensor output with minimal footprint and power. Local, dis-
tributed signal amplification and analog-digital conversion
are preferred to preserve signal-to-noise ratio (before a signal
is broadcasted through wire leads). Local signal processing
avoids the routing bottleneck associated with long wire leads.

The density of integration of the sensors on a preferred
sensor chip may reach as high as, for example, I -I 0/mm 2 . The
maximum density on a preferred chip may be determined not
only by sensor sizes but also by the footprint of signal pro-
cessing circuits.

Also, in preferred methods of manufacturing the sensor
chip, the cost of manufacture should be as low as possible to
allow widespread use, especially if large continuous sensor
chip surfaces are required. Manufacturing processes are pref-
erably integrated and efficient. Particularly, monolithic inte-
gration is preferred because costs can be reduced through

4
batch fabrication. It is also preferred that the efforts for cali-
brating three-dimensional sensor positions should be mini-
mized to streamline their use.

Preferred sensor chips include multi-modal sensor nodes
5 that are for tactile sensing and/or for flow sensing. For

example, a multi-modal tactile sensing node may be pro-
vided.

A preferred multi-modal tactile sensor node can success-
fully incorporate multiple sensor modalities for evaluating

10 one or more of contact forces, and the relative hardness,
thermal conductivity, and/or temperature of a contacted
obj ect.

Traditional microfabricated tactile sensors suffer from a
number of significant disadvantages. For example, they are

15 typically based on silicon, which is usually a rigid and fragile
material from a mechanical point of view. Exposing the sen-
sors presents problems if silicon is used, because silicon is
easy to fracture upon mechanical impact and over-loading.
For example, many silicon micromachined tactile sensors do

20 not stand force loading well.
The individual sensors of each multi-modal sensory node

are fabricated on the polymer-based substrate using surface
micromachining. Thin-film metal elements are used, for
example, as piezoresistors, heaters, and temperature sensors.

25 Preferred methods for manufacturing the individual sensors
involve a relatively low temperature and do not involve bulk
micromachining. In this way, all of the sensors can be formed
on the polymer-based substrate.

30 
Also, traditional silicon sensors only sense surface rough-

ness features and contact forces. By contrast, a preferred
tactile sensing node may contain one or more of surface
roughness, contact force measurement, thermal conductivity,
hardness, temperature, and/or proximity sensors. Such addi-

35 tional modalities preferably allow a preferred tactile sensor
node to characterize an object in a more comprehensive fash-
ion.

Another exemplary multi-modal sensor node that may be
formed on a surface of the sensor chip is a flow sensor node.

40 A preferred multi-modal flow sensor node can characterize a
boundary-layer flow field in a comprehensive fashion, with
high spatial and temporal resolution. Such exemplary multi-
modal flow sensor nodes may be used, for example, in real-
time monitoring of a flow field in underwater vehicles and

45 structures, and in characterizing flow fields around models in
experimental wind or water tunnels.

Traditional flow sensors are based on hot-wire anemom-
etry for measuring flow speed, or diaphragms for measuring
pressure distribution. Such different sensors typically have

50 been based on specific structures that are significantly incom-
patible with fabrication processes and materials. Accord-
ingly, it has been impossible to measure several flow param-
eters locally and with a distributed array. By contrast, a
preferred multi-modal flow sensor node includes one or more

55 of various flow sensors, including, for example, surface
micromachined artificial haircell sensors (for flow rate), sur-
face micromachined hot-wire anemometers (for flow speed
distribution, preferably along three axes), and surface micro-
machined diaphragms, preferably manufactured from

60 Parylene, for pressure sensors and shear stress sensors (for
vortex and drag detection).

A preferred sensor chip substrate is manufactured prima-
rily from polymer-based materials, as opposed to silicon.
Because silicon is a relatively fragile material for sensors,

65 sensor chips made out of polymer material offer desirable
mechanical flexibility and robustness compared with silicon
counterparts. However, most existing polymer materials such
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6
as silicone elastomer, polyimide, and plastics cannot host	 persed between the sensory nodes 14 to sense bending of the
signal processing electronics like silicon substrates do. 	 substrate. In this way, the contour of a bent skin is sensed in an

Hence, a preferred sensor chip integrates flexible polymer
	

integrated fashion using the mapping sensors 32. For
devices with discrete silicon chips for signal processing. The	 example, when the sensor chip 10 is mounted on a curved or
silicon chips (islands) are selected and designed so as not to 5 compliant surface (e.g., a robotic finger tip), as shown by
significantly impede the overall mechanical flexibility and

	
example in FIG. 2, the spatial relation of the multi-modal

surface integrity of the sensor chip, and so that they can be	 sensor nodes 14 is mapped to coordinate manipulation in
integrated in efficient manufacturing processes without sig- 	 three-dimensional space.
nificantly compromising cost. 	 Individual sensing elements will now be described in more

Exemplary applications of a preferred sensor chip include, io detail. As shown in FIG. 1, a preferred temperature sensor 16,
but are not limited to, smart tactile skins for sensor-rich sur-	 for example, includes a nickel resistance temperature device
gical tools, robotics manipulators, computer periphery input

	
(RTD) 34 that is used to measure the temperature of the

devices, and smart toys having sensor input. Preferred sensor 	 operating environment as well as contact objects. This infor-
chips having flow sensors may be useful for, e.g., smart flow 	 mation is important for temperature compensation of the
sensing skins for underwater robots (e.g., for exploration or 15 measurements of the other sensors as well as providing con-
mine detection), underwater vehicles and infrastructures 	 tact object information. The temperature sensor 16 and other
(e.g., oil drilling stations in deep sea), and scientific explora- 	 sensor components are connected to other parts of the sensor
tion and measurement (e.g., wind tunnels). Preferred embodi- 	 chip, such as a processor, by leads 36.
ments of the sensory chip have the potential to make a sig- 	 Because all the sensors 16, 18, 20, 22 incorporated on the
nificant impact on a broad range of applications for industry, 20 exemplary tactile sensing node are based on thin film metal
exploration, military, and security, as nonlimiting examples. 	 resistors, all of them will function as RTDs to one extent or

Referring now to FIG. 1, an exemplary sensor chip 10 is	 another based on the TCR (thermal coefficient of resistance)
shown, embodied in a flexible polymer-based substrate 12

	
of the base material. This value is low for NiCr, making it a

forming a skin, and including a plurality of multi-modal
	

good choice for rejecting thermal disturbances, but is high for
sensor nodes 14, shown as multi-modal tactile sensor nodes. 25 nickel and gold. Gold is not used for a preferred RTD due to
As shown in FIG. 1, the multi-modal sensor nodes 14 are

	
its low resistivity. By using nickel, a high TCR is provided

repeated over an nxn array (as shown, 30) to form the sensor 	 with the added benefit of increased resistivity to decrease the
chip 10. A preferred multimodal tactile sensor node, for	 effect of parasitic resistances. The TCR of each sensor is
example, includes multiple sensor modalities (hardness, ther-	 characterized to allow temperature compensation by calibrat-
mal conductivity, temperature, contact force, surface rough-  30 ing the reference nickel RTD, for example, by heating the
ness). These nodes 14 in an exemplary embodiment are 	 sensor chip 10 and observing the changes in resistance with
repeated with a spatial frequency of approximately 1 per 1

	
temperature, then calculating the base metal TCR.

cm2, though this repetition or particular distribution is not
	

Hardness of a contact object is an important parameter for
necessary. For example, individual nodes may have the same 	 object identification and manipulation. This measurement
number of sensors or a significantly different number and/or 35 modality is lacking in most conventional tactile sensors.
type of sensor. Also, the spatial frequency of the nodes can

	
Existing micromachined hardness sensors require that the

vary, and may be greater or fewer than 1 per 1 cm2. 	 applied force be known, use a known calibrated integral
The multi-modal sensor node 14, a tactile sensor node,	 actuator force, or use changing resonant frequency under

includes a temperature sensor 16, a thermal conductivity 	 ultrasonic vibration. The required assumptions, complexity,
(thermal flux) sensor 18, and a contact force and measured 4o and size limitations of such approaches do not lend them-
hardness sensor 20. The multi-modal sensor node 14 also 	 selves to a distributed multi-modal sensor chip. By contrast, a
includes a reference hardness sensor 22 for use with the 	 preferred hardness sensor 40 shown in FIGS. 3A-313 is a
contact force and measured hardness sensor 20. Sensors may 	 passive hardness sensor that does not rely on actuation or
also be implemented for such tasks as object identification

	
knowledge of contact force.

and impending slippage detection. In the preferred tactile 45	 Referring now to FIGS. 3A-313, the passive hardness sen-
sensor node 14, a reference nickel resistance temperature	 sor 40, which may be incorporated into the multi-modal sen-
device (RTD) of the temperature sensor 16 provides tempera- 	 sory node 14, derives a hardness of a contact object using two
ture measurement and compensation, a gold heater 24 and

	
contact sensors of different support stiffness: the contact

nickel RTD 26 pair provides thermal conductivity measure- 	 force and measured hardness sensor 20 and the reference
ment for the thermal conductivity sensor 18, and the mem- 5o hardness sensor 22. The preferred hardness sensor does not
brane NiCr (nichrome) strain-gauge based contact force and

	
rely on knowledge of contact force. In a preferred embodi-

hardness sensor 20 with the reference contact hardness sensor 	 ment, the measurement sensor 20 is mounted on a polymer
22 measures hardness.	 membrane, while the reference sensor 22 is built on the bulk

The substrate 12 is preferably made of a polymer-based
	

substrate 12. Both the measurement sensor 20 and the refer-
material. In an exemplary sensor chip 10, the substrate is a 2 55 ence sensor 22 include a strain gauge 42, which may be made
mil thick Kapton HN200 polyimide film, manufactured by

	
from NiCr, for example, to measure response. A differential

E.I. DuPont de Nemours and Co. The polymer substrate 	 response between the measurement sensor 20 and the refer-
allows flexibility, robustness, and low material cost. Flex	 ence sensor 22 is used to measure the hardness of a contact
channels 30 are provided in the substrate along two dimen- 	 object 43.
sions by forming indentations in the substrate 12. The flex 60	 The structure ofthe preferred hardness sensor 40 withinthe
channels 30 provide enhanced and controlled flexibility to the 	 sensor node 14 is shown in FIG. 3A and in cross section in
substrate 12.	 FIG. 3B. The exemplary hardness sensor 40 includes the

In addition, the contour of the substrate 12 is sensed in an	 measurement sensor 20 on a square polymer diaphragm 45
integrated fashion using mapping sensors 32 embodied in 	 and a reference sensor 22 on the bulk polymer substrate 12.
microscale strain gauges, also preferably made of NiCr, and 65 Both sensors 20, 22 include a contact mesa 46 with the strain
dispersed between the sensory nodes 14 (as shown in FIG. 1, 	 gauges 42 situated on the periphery of these mesas. The
the tactile sensor node). The mapping sensors 32 are dis- 	 square of a diaphragm 45 of the measurement sensor 20 has a



(3)

40 Where T is the time constant of the first order system,
giving a measure of how quickly the system responds to an
input. The time constant of the temperature of the temperature
sensor 26 is found to be a function of contact object thermal
conductivity. This method was found to correlate well to

45 contact object thermal conductivity.
In an exemplary operation, characterization of the perfor-

mance of the thermal conductivity sensor is performed at
room temperature (-22° C.) by inputting a 0-2 VDC square
wave at 0.3 Hz to the gold heater 24 and measuring the

5o resulting change in resistance of the nearby Ni RTD 26. The
resistance of the RTD is sampled at 10 Hz using an Agilent
33410A multi-meter and GPIB interface.

The thermal conductivity sensor 18 preferably should
behave as a first order system with a time constant related to

55 the object thermal conductivity. FIG. 6 shows the result of
testing, where contact objects of various thermal conductivi-
ties (nylon 6, soda-lime glass, single crystal silicon, 300-
series stainless steel, aluminum, and ambient air) were placed
in contact with the surface of the thermal conductivity sensor

60 18, and the time constant of the resulting signal at the tem-
perature sensor 26 was obtained through curve fitting. It was
observed that the time constant decreases and the step
response of the temperature of the temperature sensor 26 is
faster with increasing thermal conductivity. Scatter is

65 observed and expected due to changes in contact configura-
tion from test to test due to surface roughness. The relation-
ship between object thermal conductivity and time constant is
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relatively low stiffness and for a given maximum central
displacement requires a uniform pressure according to
clamped-clamped plate theory as shown in Eq. 1.

	

Z.—EP
	

(1)

gP "  — (0.0138)b4

In Eq. 1, zm,, is the peak vertical deflection in the center of 10

the diaphragm 45, date is the pressure applied to the plate, b
is the length of the square sides, E is the material modulus,
and t is the plate thickness.

The preferred reference sensor 22 does not use a dia-
phragm; rather the contact mesa 44 and the strain gauges 42 15

are positioned over full thickness bulk polymer 12. The stiff-
ness of the bulk reference sensor 22 is thus much higher than
the measurement sensor diaphragm 45. The preferred refer-
ence sensor 22 requires a uniform pressure for a given deflec- 

20
tion according to Eq. 2.

	

zm—E
	

(2)
46utt = (224) a (1 — v2)

25

In Eq. 2, v is the bulk material Poisson's ratio, a is the
contact mesa 46 width, and gbuik is the pressure applied to the
bulk sensor contact mesa. This model assumes that the refer-
ence sensor 22 behaves like a semi-infinite block under a 30

uniform pressure over the area of the contact mesa.
When the sensor chip 10 is in contact with the object 43,

changes in resistance are observed at both the measurement

tance changes are converted to a peak deflection (z m,,) with
and reference sensor strain gauges 42. The measured resis-  

35

calibrated resistance versus displacement data and used to
find the apparent pressures qp,,, and gbuik with Eqs. 1 and 2.
The contact object hardness 43 is related to the ratio of appar-
ent pressures.

Measurement of contact forces can also be performed
using the measurement sensor 20 and the reference sensor 22.
Based on the known geometry of the devices, the pressures
can be equated to normal force. The differential stiffness of
the two sensors 20, 22 allows two different ranges of contact
forces to be measured.

In an experimental operation of the hardness sensor 40, a
number of polymer samples were placed in contact with the
sensor skin 12. A range of reference samples of sorbothane
and polyurethane rubber with known hardnesses ranging
from 10 to 80 Shore A were cut into 5 mm by 5 mm squares
and pressed onto the sensor skin 12 using a fixed mass (147 g).
The change in resistance of each sensor 20, 22 was converted
to an equivalent displacement using calibration data. Calibra-
tion data was generated by measuring the change in resistance
of the measurement membrane sensor 20 and the bulk refer-
ence sensor 22 in response to a known normal displacement
provided by a micromanipulator probe coupled to a precision
linearly variable differential transformer (LVDT).

The proportionality between pressure ratio and object
hardness is shown in the graph of FIG. 4. A large amount of
scatter was observed in the hardness data as can be seen in the
graph. This is attributable to the surface roughness of the
rubber samples. Nevertheless, a clear overall trend is
observed when a large number of data points are averaged as
in FIG. 4, showing an increase in pressure ratio with object
hardness.

8
The thermal conductivity of the contact object 43 is another

important piece of data for object identification. The thermal
conductivity sensor 18 operates by observing the changing
resistance of the nickel RTD 26 in response to an input to the
gold heater 24. The thermal conductivity of the contacting
object 43 is a useful measure for object discrimination, and in
concert with other sensing modes can expand the capabilities
of the overall sensor chip 12 by helping to distinguish
between equally "hard" objects for example.

As shown, the value is derived by measuring heat flux
between the heater 24 and the temperature sensor 26, which
are disposed on the polyimide substrate 12. The heater 24,
preferably manufactured from gold as described above, is
disposed on a bump 48 (FIG. 5) formed on the substrate 12,
and is situated near, yet separated from, the temperature sen-
sor 26. The exemplary temperature sensor 26 is embodied in
an Ni RTD thermoresistor, also disposed on thebump 48. The
heat transfer between the heater 24 and the temperature sen-
sor 26 is altered when the contact object 43 contacts the
surface of the sensor chip 12 over the thermal conductivity
sensor 18, which changes the thermal transfer path. The heat
flux travels through the contact object 43 as well as the sub-
strate 12, which changes the signal measured at the tempera-
ture sensor 26. A stepped power input to the heater generates
a signal at the temperature sensor with a time constant that
varies with the thermal conductivity of the contact object.

When not in contact with the object 43, the only route for
the heat input of the heater 24 to reach the RTD of the tem-
perature sensor 26 is through the polyimide substrate 12 and
the surrounding air. When the object 43 comes in contact with
the thermal conductivity sensor 18, the low efficiency heat
path through the air is replaced by solid conduction, changing
the character of the signal measured at the temperature sensor
26. Using an Ni RTD as the temperature sensor 26, for
example, with a square wave voltage input to the heater, the
temperature of the temperature sensor can be modeled as a
simple first order system according to Eq. 3.
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found to be approximately logarithmic based on a curve fit of

	
adhesion layer (not shown). Then, 750 A of NiCr 68 is depos-

FIG. 6. As shown, more conductive objects result in faster
	

ited and lifted off to define the strain gauges for the force 20,
response and smaller time constant.	 curvature (mapping) 32, and hardness sensors 22. Preferably,

Another type of sensing measures curvature of the sub- 	 no adhesion layer is used. In order to achieve the relatively
strate using the mapping sensor 32 described above. The 5 high resolution required for the minimum NiCr (10 µm) and
mapping sensor 32 preferably embodied in integrated NiCr

	
Ni (15 µm) feature widths on a flexible polymer substrate, in

strain gauges dispersed between the sensor nodes 14 mea-	 a preferred embodiment, the Kapton film 12 is temporarily
sures the x- and y-direction curvature of the flexible substrate 	 attached to a Pyrex substrate via surface tension by wetting
12. The mapping sensors 32 are positioned over the flex	 the substrate with a drop of de-ionized water. The RTDs 26
channels (trenches) 30 etched in the back of the polyimide io are patterned preferably via liftoff using standard image
substrate 12 to allow the substrate to preferentially bend in 	 reversal photolithography. The last metal layer comprises
these regions. Processing of these measurements into bending

	
1500 A of gold 70 on a 100 A chrome adhesion layer that is

angles using calibrated data allows a three-dimensional map- 	 thermally evaporated and lifted off (FIG. 8D), forming wiring
ping of skin curvature state. The skin mapping sensors 32 are

	
36. Before each metal deposition step 60, the film substrate is

found to perform linearly (R 2-0.996) with respect to curva- 15 placed in oxygen planar plasma for 3 minutes at 300 W to
ture with sensitivity of 44.25 ppm. 	 remove photoresist residue from image reversal and to

Skin curvature calibration is accomplished by flexing the
	

improve metal adhesion to the polymer film.
substrate 12 under known displacement using a microman- 	 The final step is to spin on and pattern the tactile contact
ipulator coupled to a precision linearly variable differential

	
bumps 46 for the force and hardness sensors (FIG. 8E). The

transformer (LVDT). Measurements are taken while bending 20 bumps 46 are defined from an 8-µm-thick layer of HD4000
and relaxing to assess visco-elastic hysteresis and plastic 	 photo-definable polyimide in the center of each sensor. The
deformation. A resulting response of the mapping sensors 32

	
polyimide is cured for 2 hours at 350° C. and 1 Torr nitrogen.

versus skin flex for a number of tests is seen in FIG. 7. 	 Another embodiment of the present invention includes a
The processing steps preferably do not have to involve high

	
sensor node for flow sensing. The substrate may be polymer-

temperature steps or bulk micromachining, therefore they can 25 based as in the substrate supporting the tactile sensor node 14.
be substrate neutral. Specifically, the microfabrication pro- 	 Comprehensive flow sensing in the fluid boundary layer
cess can be carried out directly on flexible and low cost

	
involves measurement of, for example, pressure, shear stress

polymer substrates. 	 (drag and vortex), temperature, and three-axis flow rates. The
A description of an exemplary fabrication process follows	 spatial and temporal evolution of surface flow features is

for the sensory chip and the tactile sensory node, referring to 30 extremely difficult to obtain due to limitations of scientific
FIGS. 8A-8E. A polyimide film substrate 60, for example a 50

	
instruments.

mm square sheet cut from a sheet of DuPont Kapton HN200
	

Conventional flow sensing instruments such as hot-wire
polyimide film is provided. This film 60 is preferably about 50

	
anemometers are singular point measurement devices only.

µm thick, though other thicknesses may be used. During the
	

They suffer from a number of bottlenecks: their sizes are large
fabrication of the polyimide film 60, one surface of the film is 35 and may change the characteristics of the flow; it is extremely
in contact with a roller and the other is untouched. In practice, 	 difficult to measure multiple flow parameters including vec-
measurements with an optical vertical scanning interferom-	 tor speed, pressure, and shear stress, which is proportional to
eter (VEECO LM1000) showed very small roughness differ- 	 the gradient of velocity in the boundary layer; and it is diffi-
ences between the free and roller faces (197 nm and 243 nm 	 cult to characterize a flow field within a thin boundary layer
Rq respectively). Prior to photolithography, the polyimide 40 (thickness on the order of 1 mm).
film substrate 60 is cleaned and then baked at 350° C. under

	
Microfabricated flow sensing surfaces with multiple sens-

nitrogen at 1 Torr for 2 h. 	 ing modalities to record pressure, shear stress, and flow rates
Once the polyimide film substrate 60 has been cured, an 	 would be useful for experimental fluid mechanical studies

aluminum etch mask 62 is deposited and patterned via lift off
	

and for underwater vehicles and platforms. Such sensors pref-
on the "rough" roller side of the film (FIG. 8A). The film 45 erably would be fabricated using efficient, low cost tech-
substrate 60 is then etched in an oxygen plasma reactive ion 	 niques. They preferably would allow integration of micro-
etcher at 350 W with 300 mT oxygen pressure (FIG. 813) to 	 electronics signal processing units, and should be relatively
define the flex channels 30 and the membrane sensor dia- 	 mechanically robust.
phragms 45. The film 60 preferably is etched 40 µm down at

	
Potential application scenarios for multi-modal flow sen-

a rate of —330 nm per minute. This plasma-etching step pref-  50 sors may include, but are not limited to: comprehensive moni-
erably is performed first to avoid erosion of backside metal

	
toring of liquid flow field for underwater vehicles and struc-

layers that may otherwise occur.	 tures, such as autonomous underwater vehicles, deep-sea
With the sensor node 14 regions and contact force mem- 	 drilling stations, and military vehicles for possible drag

branes defined, a 2-µm-thick layer of photo-definable poly-	 reduction; and comprehensive monitoring of air flow condi-
imide (for example, HD Microsystems HD4000) is spun on 55 tions for aircrafts and unmanned vehicles.
the smoother top skin surface and patterned to define contact

	
A large sensitive skin could be used to cover an object with

mesas 46 for the thermal conductivity 18 and reference RTD
	

a large area and curved surfaces. For example, an aerody-
sensors 22 (FIG. 8C). FIGS. 9A-913 show exemplary RTD

	
namic model used in an experimental wind- or water-tunnel

strain gauges on a membrane hardness sensor 20 and a refer- 	 may be covered with the sensitive skin in strategic regions to
ence bulk sensor 20, respectively. This layer is aligned to the 60 provide direct experimental characterization of flow field.
backside features via alignment marks visible due to the

	
Such flow field data has been prohibitively difficult to obtain

optical clarity of the HN200 film. Once patterned, the poly- 	 in the past. Such comprehensive results can be used to vali-
imide layer is cured under 1 Torr of nitrogen at 350° C. for 2

	
date and improve theoretical models or provide aerodynamic

hours.	 design insights.
Next, nickel RTDs 26 are patterned and deposited on the 65	 The diagram of an exemplary single sensor node is illus-

contact mesas 46. For example, nickel (e.g., 500 A Ni) 64 is	 trated in FIG. 10. According to an embodiment of the present
thermally evaporated via e-beam on top of a 100 A chrome

	
invention, the node 70, which may be disposed on a flexible,
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polymer-based substrate 72, is provided with one or more of
the following sensing units: an artificial haircell 74 for mea-
suring three-dimensional flow velocity, one or more hot-wire
anemometers 76 along one or more dimensions for measuring
the velocity of flow at different distance to the boundary layer,
a pressure sensor 78 for monitoring pressure variation, and a
shear stress sensor 80 for measuring surface vortex. Various
sensors may be integrated together on the polymer substrate
using novel material and fabrication processes as described
herein.

Fish and many underwater animals utilize multimodal sen-
sitive skin that can detect flow, pressure distribution, electri-
cal potential and field, and local vortex. The lateral line is a
primary sensing organ for fish. It usually spans the length of
the fish body. Its main functions include (1) detection of water
flow around the fish body, allowing a fish to maintain stability
within turbulent currents and (2) detection of distant objects
such as obstacles, prey and predators using direct or reflected
waves. Linearly distributed along the lateral line are clustered
haircell bundles embedded in a gel-like dome called a neuro-
mast. Water flowing past the neuromasts imparts forces to the
haircells and causes them to bend, with the extent of the
bending determined by the speed of the flow. In certain spe-
cies, the haircells lie outside of the epidermis; in others, they
are embedded in sub-dermal canals for added protection
against wearing and damages.

Artificial haircell sensors may be used for mimicking the
lateral line system of fish. A schematic diagram of an exem-
plary haircell sensor 82, made of single crystal silicon sub-
strate 83, is shown in FIG. 11. The haircell sensor 82 consists
of an in-plane fixed-free cantilever 84 with a vertical artificial
cilium 86 attached at the distal, free end. External flow par-
allel to the sensor substrate 83 impacts upon the vertical
cilium 86. Due to rigid connection between the in-plane can-
tilever 84 and the vertical cilium 86, a mechanical bending
moment is transferred to the horizontal cantilever beam,
inducing strain at the base of the cantilever beam, which is
detected using a strain sensor 88, such as a piezoelectric
sensor producing a signal that is transmitted by conductive
contacts 90. The magnitude of the induced strain can be
sensed by many means, for example by using integrated
piezoresistive sensors.

The vertical cilium 86 preferably is realized using a three-
dimensional assembly technique called plastic deformation
magnetic assembly (PDMA). A description of the PDMA
process is provided in J. Zou, J. Chen, C. Liu, and J. Schutt-
Aine, "Plastic Deformation Magnetic Assembly (PDMA) of
Out-of-Plane Microstructures: Technology and Application;
IEEE/ASME J. of Microelectromechanical Systems, Vol. 10,
No. 2, pp. 302-309, Jun. 2001, which is incorporated in its
entirety by reference. A preferred assembly process allows
reliable formation of three-dimensional structures in large
array format. Multiple structures can be achieved at wafer-
scale by a globally applied magnetic field. Position and height
of the cilia can be controlled.

A preferred polymer based haircell device is also provided,
as shown by example in FIG. 12. An artificial haircell (AHC)
92 includes a vertical beam 94 (cilium) rigidly attached to the
substrate 92. The vertical cilium 94 is made of surface micro-
machined polymer, and more preferably includes a stiff per-
malloy plating.

As shown in FIG. 12, the vertical cilium 94 is rigidly
attached to the substrate 72 by one or more rigid metal sup-
ports 95. The substrate 72 can be any of various substrates, but
preferably is a polymer-based substrate. Attached at the base
of the vertical cilium 94, between the cilium and the substrate,
is a strain gauge 96. The strain gauge 96 includes a thin film

12
nichrome (NiCr) resistor on a thicker polyimide backing that
runs the length of the cilium 94. The piezoresistive strain
sensors 96 are located on the piece that is assembled (i.e., the
vertical cilium 94) using three-dimensional assembly.

5 When an external force is applied to the vertical cilium 94,
either through direct contact with another obj ect (functioning
as a tactile sensor) or by the drag force from fluid flow (flow
sensing), the beam will deflect and cause the strain gauge 96

10 
to stretch or compress. The strain gauge region is treated as
being rigidly attached to the substrate 72, while the cilium 94
is free. The magnitude of the induced strain (e) is largest at the
base, where the strain gauge is located,

15
M tyl 	4)

2E[

20 where M is the moment experienced at the base, tp, is the
polyimide thickness, and E and I are the modulus of elasticity
of and the moment of inertia of the polyimide. The very thin
nichrome resistor of the strain gauge 96 is not taken into
account.

25 The vertical cilium preferably is surface micromachined
and deflected out of plane using magnetic 3D assembly, such
as PDMA, and canbe conducted on a wafer scale. The vertical
cilium 94 remains in deflected position due to plastic defor-
mation at the joint.

30 A preferred fabrication method includes a series of metal-
lization and polymer deposition steps. Referring to FIG. 13A,
first, on a substrate 100 a 0.5-µm Al sacrificial layer 102 is
evaporated and patterned. Then, a 5.5-µm photodefinable
polyimide 104 (e.g., HD-4000 from HD Microsystems) is

35 spun-on and patterned photolithographically. The polyimide
104 is cured at 350° C. in a 1 Torr Nz vacuum for 2 hours.
Preferably, this is the highest temperature used in the process,
allowing the AHC to be fabricated on various substrates 100,
including polymer-based substrates.

40 Afterwards, a 750-A-thick NiCr layer 106 used for the
strain gauge 96 is deposited by electron beam evaporation.
This is followed by a 0.5-µm-thick Au/Cr evaporation 108
used for electrical leads 110 and the bending hinge. The
Au/Cr layer 108 is then used as a seed layer to electroplate

45 approximately 5 µm of permalloy 112 before being removed
by lift-off. The resulting structure is shown in FIG. 13A. The
final surface micromachining step is another 2.7-µm polyim-
ide film (not shown) to serve as a protective coating for the

50 
permalloy cilium and the NiCr strain gauge.

The Al sacrificial layer 102 is then etched in a TMAH
solution for over a day to free the structure. The sample is then
carefully rinsed and placed in an electroplating bath 113,
where an external magnetic field is applied that interacts with

55 
the permalloy 112 to raise the vertical cilium 94 out of plane.

For example, in a post-release Ni plating setup, shown by
example in FIG. 14, an external magnetic field 114 is applied
with an electromagnet 115 during the electroplating process.
Preferably, the entire process is done under a microscope.

60 After a few minutes of plating, the magnetic field 114 is
removed and the cilium remains permanently out of plane.

While the external field is being applied, Ni 116 is electro-
plated on theAu hinge using a nickel anode 118, whichrigidly
fixes the structure out-of-plane to the substrate and reinforces

65 the ductile An hinge, as shown in FIG. 13B. The Ni electro-
plating is done on the substrate globally, preferably lasting
about 20 minutes to achieve a thickness of approximately 10
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mm. The actual thickness is difficult to measure and control,
but is not important as long as it is rigid relative to the poly-
imide film.

SEM images of the hinge are shown in FIG. 15A-15B,
showing the difference between a deformed An hinge with
and without Ni plating. An array of AHCs 92 with different
vertical cilium and strain gauge geometry is shown in FIG.
16, showing the parallel nature of the preferred fabrication
process. Again, it is preferred that overall, the fabrication
method does not exceed temperature over 350° Celsius,
allowing it to be completed on a skin-like thin film polymer
substrate on other substrates. Silicon, glass, and Kapton film,
for example, can be used as a substrate for this process. The
resistance of devices tested ranges from 1.2 kW to 3.2 kW,
and TCR measurement of the as-deposited NiCr film in an
exemplary AHC has a value of —25 ppm/° C., which is very
small and should not contribute to anemometec effects dur-
ing airflow testing.

In an exemplary operation of the AHC 92, the resistance
change due to external displacement is shown in FIG. 17 for
an 850 µm tall vertical cilium. A micromanipulator is used to
deflect the distal end of the vertical cilium. The resistance
change is measured by a multimeter, and is linear to the beam
deflection. The gauge factor GF can be calculated from the
slope of the curve,

14
10 m/s. The device with the shortest cilium, even with a
greater width, does not have the 600 ppm resistance change
until 30 m/s. The sign of resistance change can be indicative
of the direction of air velocity. However, the response in

5 various directions does not seem to be symmetrical. This is
because it is difficult for the PDMA assembly process to
orient the cilium at exactly 90° to the substrate. The charac-
teristic lengths of individual MEMS devices range from 1 µm
to 1 mm, although distributed microsystems containing

io arrays of devices could have larger overall sizes.
The artificial haircell, for example, may be used to realize

other sensing modalities, including but not limited to vibra-
tion sensing. By varying the geometry and mass of the vertical
cilium, the haircell can be made more responsive to inertia

15 forces created by vibration. For example, a three-axis accel-
eration sensor may be provided, as shown by example in FIG.
19.

Among other flow sensor components, the hot-wire sensor
76 uses an electrical wire placed in the flow field. The wire is

20 heated using ohmic heating and the resistance of the wire
(which is a function of temperature) is monitored. Flow
imparts forced convection on the wire to induce cooling. The
temperature of the wire indicates the flow speed.

Existing hot-wire sensors are all supplied as individual
25 

devices. Their sizes are relatively large. Even micromachined
hot-wire anemometers are supplied as singular units. They
cannot measure the distribution of flow in a distributed field.
By contrast, a hot-wire sensor can be made using surface

30 
micromachining process and three-dimensional assembly
method. It can be made on polymer substrates with large
two-dimensional array formats. Examples of hot wire
anemometers formed on a substrate and fabrication methods
for them are provided in J. Chen and C. Liu, "Development

35 and Characterization of Surface Micromachined, Out-of-
Plane Hot-Wire Anemometer," in Journal of Microelectome-
chanical Systems, Vol. 12, No. 6, Dec. 2003, pp. 979-988, and
in J. Chen, J. Zou, and C. Liu, A Surface Micromachined,
Out-of-Plane Anemometer," in Proceedings MEMS, Las

40 
Vegas, 2002, pp. 332-335, which are incorporated by refer-
ence in its entirety herein. FIG. 20 shows a three-dimensional
array of hot-wire anemometers, which can be formed by
selecting fabricating individual anemometers and raising
them out of plane.

45 Conventional pressure and shear stress sensors employ a
membrane. In the case of a pressure sensor, the diaphragm
bends in response to applied pressure difference. In the case
of shear stress for measuring fluid stress, the membrane sup-
ports a heated hot-wire element. Referring to FIG. 10, the

50 pressure sensor 78 may include, for example, an NiCr strain
gauge 120 disposed on a Parylene film 122 forming a raised
diaphragm for measuring deflection of the Parylene film in
response to pressure. The shear stress sensor 80 may include
a raised Parylene membrane with a heated hot-wire element

55 such as a nickel thermoresistor 126 for measuring fluid stress.
According to another embodiment of the present invention,

a microfabrication sequence for a Parylene membrane, shown
by example in FIG. 21, with patterned metal on the membrane
is provided, in which a preferably polymer membrane dia-

60 phragm supports metal leads used for a pressure sensor and
for a shear stress sensor. The metal leads can be used for both
pressure sensing and shear sensing (temperature sensing).
The location preferably determines the principal use of a
particular metal lead. For example, the metal leads closer to

65 the center of the membrane may be better located for shear
sensing, while the metal leads closer to the edge of the mem-
brane may be better located for pressure sensing.

GF= dR/R
	 (5)

'PI

where dR/R is the percent resistance change, and ep, is the
calculated strain from a fixed-free beam (See Eq. (4)) under-
going a deflection x. The plastically deformed hinge, after
being plated with approximately 10 µm of Ni, is very rigid.
The modulus of elasticity for the nickel is approximately two
orders of magnitude larger than polyimide (200 Gpa versus
3.5 Gpa). Therefore, an assumption of a fixed-free cantilever
model should be valid. The measured gauge factor for an
exemplary strain gauge configuration is about 1.4, which is
lower than expected. This could be attributed to the strain
gauge not being located at the point of maximum strain.

Several fabricated AHCs were then tested as airflow trans-
ducers in a wind tunnel. The airflow with velocity U imping-
ing on the cilium results in a drag force acting normal to the
paddle, leading to a moment on the strain gauge

M _C,, 
2 

pU'.ydy	 )
0

where CD is the drag coefficient, r is the density of air, w and
1 are the width and length of the cilium. Because strain is
proportional to the applied moment, and resistance change is
proportional to strain, Equation (6) suggests a quadratic rela-
tionship between airflow and resistance change. In addition,
by systematically varying the height and width of the cilium,
the response can be tailored to different ranges of air velocity.
The polarity of resistance change is dependant on the direc-
tion of the airflow.

The wind tunnel measurement of three AHCs with differ-
ent cilia geometry is plotted in FIG. 18. TheAHCs tested were
fabricated on a silicon substrate to allow wire bonding to the
sample. The AHC with the longest cilium length of 1500 µm
is the most sensitive, with dR/R reaching 600 ppm at around
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In an exemplary fabrication process, a photoresist layer is 	 wafer 156 having preformed circuit elements, on which the

deposited andpatterned as a sacrificial layer to define a mem- 	 sensor elements 154 are formed. Such silicon wafers 156 may
brane cavity. A layer of Parylene is deposited, preferably 	 contain, for example, op-amps, multiplexors, and/or A/D
having a thickness in the 0.2 to 5 µm range. A metal thin film	 conversion functions.
is deposited and patterned to form a resistor that can respond 5	 Post-process steps are performed to build interconnect
to stress (piezoresistor). The gauge factor of such resistors is	 wires 158 (step (b)) and the tactile or flow sensor elements
typically approximately 1-5. Metals that can be used include

	
154. Next, the backside of the wafer 156 is patterned and

NiCr (nichrome), Pt, Au, Cu, Al, and others. 	 etched (step (c)) to form trenches 160. An elastomer precursor
Another layer of Parylene is deposited on top of the metal

	
162 is poured and cured (step (d)), to encase resulting silicon

thin film, passivating the resistors and reducing or preventing io islands 164 in a elastomer back-filled skin. The front surface
damage by environmental elements over the long run. The	 of the skin can be further protected, for example, by deposit-
photoresist is removed through spatially placed holes on or

	
ing a protective layer such as Parylene using chemical vapor

around the membrane. The cavity is dried and sealed using
	

deposition. These steps provide a flexible sensor chip 166, as
one or more of a variety of methods. One exemplary method

	
shown flexed at step (e).

to seal the cavity is to deposit another thin layer of Parylene. 15	 While specific embodiments of the present invention have
The deposition process is performed at low pressure (e.g., 40

	
been shown and described, it is to be understood that other

mtorr), and the cavity is therefore sealed under low pressure. 	 modifications, substitutions, and alternatives will be apparent
In another embodiment of the present invention, exemplary	 to those of ordinary skill in the art. Such modifications, sub-

methods are provided for integrating silicon chips (contain-	 stitutions, and alternatives can be made without departing
ing signal processing functions such as amplification, multi-  20 from the spirit and scope of the present invention, which
plexing, and analog-to-digital conversion) with a polymer 	 should be determined from the appended claims.
sensor chip (with tactile or flow sensing components) and

	
Various features of the invention are set forth in the

within the fabrication flow. FIG. 22 shows an overview of a 	 appended claims.
skin architecture showing a cluster of sensor nodes connected

	
What is claimed is:

to a local cluster processor.	 25	 1. A sensor chip comprising:
A first method includes bonding a silicon chip, such as a	 a flexible, polymer-based substrate;

commercially obtained chip 130 (e.g., ADC chip with internal
	

at least one microfabricated sensor deposited and patterned
clock from National Semiconductors) onto a polymer sensor

	
directly on said substrate by surface micromachining

skin 132. The chip may be, for example, an application- 	 and including a conductive element, said at least one
specific IC chip. A schematic diagram of this bonding 30	 sensor comprising a flow sensor.
approach is shown in FIG. 23A. In a preferred bonding pro- 	 2. The sensor chip of claim 1 wherein the flow sensor
cess, a blank slot 134 on the back surface of the sensor skin	 comprises at least one of a haircell sensor, an anemometer, a
132 is opened for the microelectronic chip 130 to rest. A

	
pressure sensor, and a shear stress sensor.

through-wafer electrical interconnect 138 is provided so that
	

3. A sensor chip comprising:
the silicon chip 130 rests on the backplane and not the front 35	 a flexible, polymer-based substrate;
plane, where the chip may interface with surface roughness.	 at least one microfabricated sensor deposited and patterned
Chip-to-polymer metal bonding technology using low melt- 	 directly on said substrate by surface micromachining
ing temperature metal thin films provides flip-chip bonding. 	 and including a conductive element, said at least one

The assembly is repeated across the skin 132 with addi-	 sensor comprising at least one of a flow sensor and a
tional circuits that handle multiple clusters for a distributed 40	 tactile sensor;
system. FIG. 23A shows an embedded sensor 139 and wiring 	 wherein said at least one sensor is part of a multi-modal
140 with anASIC flip chip 130 bonded to backside vias 138

	
sensor node, and wherein a plurality of said multi-modal

with solder bumps 142. 	 sensor nodes is distributed along said substrate.
A second method, shown by example in FIG. 2313, includes

	
4. The sensor chip of claim 3 wherein said substrate further

thinning a semiconductor wafer 144 that contains analog/ 45 comprises a plurality of strain gauges positioned over defined
digital electronics at the top surface 146 to the point that the

	
flex points along said substrate and respectively between each

semiconductor wafer becomes flexible and yet still maintains 	 of said plurality of multi-modal sensor nodes.
electronics functionalities. For example, a chip having a small

	
5. The sensor chip of claim 4 wherein the flex points are

die size (e.g., less than 1 cm 2) with thickness on the order of
	

defined by channels formed in said substrate.
10-30 micrometers, may be used. An exemplary thinned sili-  50	 6. The sensor chip of claim 1 further comprising:
con wafer is shown in FIG. 24. The silicon dies flex with the 	 a processor coupled to said at least one sensor for process-
polymer substrate 132 and therefore preserve the mechanical

	
ing signals from said at least one sensor.

flexibility. As shown in FIG. 2313, thin dies may be flip-chip
	

7. The sensor chip of claim 1 wherein the sensor is not
bonded to bonding sites 148 onpolymer sensor skin 132. The

	
disposed on silicon.

chip-to-polymer electrical connection may be achieved, for 55	 8. The sensor chip of claim 2 wherein the sensor comprises
example, using low temperature metal reflow. The top surface 	 a haircell sensor;
146 can be further protected and mechanically enhanced

	
wherein the haircell sensor comprises a cilium raised from

using conformal chemical vapor deposition of a plastic 150
	

said substrate, the cilium being capable of deflection
such as Parylene, which is stress free, relatively soft, and does 	 with respect to said substrate, and a strain gauge dis-
not damage the microelectronics or the sensor. 	 60	 posed on said cilium, which stretches or compresses in

In a third method, shown by example in FIG. 23C and FIG.	 response to an external force acting on said cilium;
25, both circuit elements 152 and sensor elements 154 are	 wherein the cilium comprises a base that is rigidly con-
built on a silicon wafer 156 first. The sensors 154 are prefer-	 nected to said substrate via a support.
ably formed on the wafer 156 after the circuit elements 152

	
9. The sensor chip of claim 2 wherein the sensor comprises

are formed (step (a) in FIG. 25). This is feasible since the 65 an anemometer.
sensor elements 154 preferably can be formed under low

	 10. The sensor chip of claim 2 wherein the sensor com-
processing temperatures. An exemplary method uses a silicon 	 prises a pressure sensor;
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wherein the pressure sensor comprises a polymer mem-
brane diaphragm disposed on said substrate and at least
one strain gauge disposed on said membrane diaphragm.

11. The sensor chip of claim 2 wherein the sensor com-
prises a shear stress sensor;

wherein the shear stress sensor comprises a polymer mem-
brane diaphragm and a hot-wire element at least par-
tially supported by the membrane diaphragm.

12. The sensor chip of claim 3 wherein each of said multi-
modal sensor nodes comprises at least one of a plurality of
flow sensors and a plurality of tactile sensors.

13. The sensor chip of claim 12 wherein said plurality of
multi-modal sensor nodes is distributed in a two-dimensional
array along said substrate.

14. The sensor chip of claim 13 wherein each of said
multi-modal sensor nodes in said two-dimensional array is
substantially identical.

15.The sensor chip of claim 13 further comprising: a strain
gauge disposed on said substrate and between said sensor
nodes.

18
16. The sensor chip of claim 13 wherein each of said

plurality of multi-modal sensor nodes are disposed in at least
one cluster;

wherein said sensor chip further comprises, for each of said
5 at least one cluster, a processor disposed to receive sig-

nals from each of said plurality of multi-modal sensor
nodes in the cluster.

17. The sensor chip of claim 16 wherein, for each of said at
least one cluster, said processor is disposed on said substrate

io and substantially centrally with respect to said plurality of
multi-modal sensor nodes in the cluster.

18. A thermal conductivity sensor comprising:
• flexible, polymer-based substrate having a raised portion

formed thereon, the raised portion defining an upper
15	 surface;

• heater disposed on the upper surface;
• temperature sensor disposed on the upper surface and

separated from said heater.
19. The sensor chip of claim 1 wherein said at least one

20 microfabricated sensor is exposed.
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